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The present article proposes a new hybrid Eulerian–Lagrangian numerical method, based
on a volume particle meshing of the Eulerian grid, for solving transport equations. The
approach, called Volume Of Fluid Sub-Mesh method (VOF-SM), has the advantage of being
able to deal with interface tracking as well as advection–diffusion transport equations of
scalar quantities. The Eulerian evolutions of a scalar field could be obtained on any orthog-
onal curvilinear grid thanks to the Lagrangian advection and a redistribution of particles on
the Eulerian grid. The Eulerian concentrations result from the projection of the volume and
scalar informations handled by the particles. The particle velocities are interpolated from
the Eulerian velocity field. The VOF-SM method is validated on several scalar interface
tracking and transport problems and is compared to existing schemes within the literature.
It is finally coupled to a Navier–Stokes solver and applied to the simulation of two free-sur-
face flows, i.e. the two-dimensional buckling of a viscous jet during the filling of a square
mold and the three-dimensional dam-break flow in a tank.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The numerical simulation of scalar advection or transport on fixed structured grids is of major importance in most mul-
tiphase flows, combustion or plasma problems, as well as in environmental research. During the last two decades, many re-
search efforts have been devoted to tracking interfaces between immiscible fluids on the one hand and, on the other hand, to
transporting specie concentrations or temperatures in incompressible flows. If we assume that the flow field is solved inde-
pendently thus providing the velocity field u, all the previous problems involve the resolution of a scalar transport equation
on a variable /.
a
@/
@t
þ u � r/

� �
¼ r � ðDr/Þ ð1Þ
According to the type of physics related to Eq. (1), the coefficients a and D are defined in different ways: a ¼ 1 and D ¼ 0
when considering an interface tracking [43] or an air quality model [36]; a ¼ qCp, where q is the density and Cp the specific
heat, and D is the conductivity if the temperature convection and diffusion are of interest [40]; a ¼ 1 and D is a diffusion
coefficient if the transport of a specie concentration is modeled [29].

Whatever the sense of Eq. (1), two types of numerical approaches are proposed depending on whether / is related to an
interface tracking or to the advection or transport of a diffusive scalar quantity. In the first class of problems, / represents the
. All rights reserved.
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local volume fraction of one fluid in each grid cell used to build the two-phase flow characteristics at each time step. For
example, the density and dynamic viscosity are defined as follows:
q ¼ q1/þ q0ð1� /Þ

l ¼ l0l1

l0/þ l1ð1� /Þ ð2Þ
Eq. (2) ensures the coupling between the interface evolution and the flow solving. Among the most popular numerical meth-
ods for simulating the advection of / can be cited the level-set approach [14], which consists in using a distance function for
simulating the evolution of /, the Volume Of Fluid (VOF) method [19,1], which is based on the reconstruction of the interface
in all grid cells, the front-tracking technique [47], which advects markers located on the interface to build / at each time
step, or the Marker And Cell (MAC) algorithm [41], which uses the advection of markers distributed into each grid cell to
obtain / after a local integration of the volume fraction held by the markers. All these methods have been extensively im-
proved and combined [2] in order to upgrade their performance and accuracy in terms of spatial convergence and consis-
tency with respect to mass conservation. They have been evaluated and tested on scalar problems, for example by Rider
and Kothe [42].

Concerning the numerical simulation of the second class of problems, i.e. diffuse scalar transport, the most natural ap-
proach consists in discretizing Eq. (1) with numerical schemes initially designed for hyperbolic scalar equations such as
TVD [28] or WENO [22] schemes. However, it has been demonstrated that these schemes involve numerical diffusion and
tend to smooth the sharp maxima and minima of the solution. Thus, an accurate description of scalar quantities cannot
be ensured when / is advected in a velocity field involving strong shearing [49,42,12]. Many other numerical methods have
been designed to solve Eq. (1) such as the GLK fourth-order Taylor–Galerkin algorithm, the ASD approach based on Taylor
expansion with Fourier derivatives, the QSTSE approach that uses fourth-order Taylor expansion with quintic splines or
the Bott scheme that belongs to the class of non linear flux normalization schemes. A review and comparison of all these
numerical schemes is proposed by Nguyen and Dabdub [36]. As for hyperbolic discretization schemes, each method has
its merits but generates spurious numerical effects such as artificial diffusion or flotsam when the scalar profile is sharp
or when shearing flows are considered.

The present paper presents the development and validation of a unified numerical method for both interface tracking
problems and diffuse scalar transport. This method aims at managing, in three dimensions, the macroscopic evolutions of
the scalar quantity / on a structured Eulerian curvilinear grid thanks to a Lagrangian description of the scalar advection
of /. This is done by generalizing the spirit of MAC techniques [41], Particle In Cell (PIC) methods [8] and Moving Particle
Semi-implicit (MPS) approaches [32]. The objectives have been to manage any profile of / while ensuring spatial conver-
gence order, accuracy and mass conservation with quality levels at least comparable to the best Eulerian methods and
schemes found in the literature.

The article is organized as follows: Section 2 presents a new numerical approach, called the Volume Of Fluid Sub-Mesh
(VOF-SM) method, based on a Lagrangian description of scalar quantities for solving Eulerian scalar evolutions. This method
uses the distribution and advection of particles at a scale smaller than the macroscopic Eulerian grid scale. The macroscopic
scalar quantities are then constructed from a projection of the Lagrangian scalar description to the fixed grid. In Section 3, the
VOF-SM method is dedicated to treating interface tracking problems based on analytical velocity fields. The application of
the VOF-SM approach to scalar transport test cases involving analytical velocity fields is presented in Section 4. Sections
3 and 4 aim at providing a detailed analysis of the performances of the VOF-SM method. Accuracy and convergence orders
are estimated and results are compared to reference simulations of the literature. The simulation of jet buckling in a 2D cav-
ity and the 3D dam-break flow are presented in Section 5 in order to illustrate the ability of the VOF-SM method to deal with
free-surface flows where complex interface rupture and coalescence occur. Finally, the benefits of the method is summarized
and perspectives for future applications and developments of the VOF-SM method are discussed.
2. A mixed Eulerian–Lagrangian method for solving scalar equations

The aim of the present study was to design a general numerical approach for solving scalar transport equations. Such a
method must be able to deal with interface tracking on orthogonal curvilinear grids in order to be applicable to industrial
flows in complex geometries while maintaining a high convergence order when strong interface stretching or tearing are
involved. Moreover, the same numerical method is used to tackle the advection of sharp or smooth continuous scalar profiles
with equivalent qualities. In addition, the method must be applicable in three dimensions.

As discussed in the previous sections, all the existing numerical methods that are based on Eulerian approaches, i.e. VOF
methods, level-set techniques, TVD and WENO schemes or front-tracking approaches, suffer from numerical artefacts or are
only applicable to specific scalar advection problems. Based on existing reports on mixed Lagrangian/Eulerian discretizations
[4] and modeling of transport phenomena, we propose to build a numerical method that solves the general form of the scalar
transport Eq. (1) in a Eulerian representation, similarly to Volume Of Fluid techniques from a Eulerian point of view, thanks
to a Lagrangian discretization. The objective of such a method is to provide a sub-mesh description of thin interface or con-
centration structures at scales smaller than the Eulerian grid size. The method is called Volume Of Fluid Sub-Mesh method
(VOF-SM).
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2.1. Existing methods

Several recent studies have been devoted to mixed Eulerian–Lagrangian numerical methods designed for solving Eulerian
interface tracking. Among them, the Eulerian–Lagrangian Marker and Micro Cell (ELMMC) method of Radd and Bidoae [41]
consists in tracking the interface between two fluids by massless unconnected markers located at the interface. A fixed
Cartesian grid is used to discretize the motion equations. In this approach, the velocity field is solved in only one phase.
The empty surface and full grid cells are flagged thanks to the markers’ positions. The surface cells are subdivided into micro
cells in order to prescribe free-surface boundary conditions. The method is not analyzed nor discussed for scalar advection
test cases concerning mass conservation and space convergence order. Its physical consistency is demonstrated through the
comparison between a 3D dam-break flow and experiments. A rather good agreement is found between simulations and
measurements on the time evolution of local velocities at various locations. The convergence of ELMMC is studied on the
water flow over a spillway geometry. Droplet interaction and coalescence as well as cavity filling problems are also
presented.

Another approach is the hybrid particle-mesh method of Liu et al. [32], which is dedicated to the two-dimensional sim-
ulation of incompressible two-phase flows. A set of particles is distributed in one phase as in a standard meshless MPS meth-
od in order to track interfaces and the conservation equations are solved on a fixed Cartesian grid. The markers are massless.
The mass conservation is ensured by a projection method and particle velocity corrections. The Eulerian interfacial quantities
are obtained by projecting the particle characteristics on the Eulerian grid thanks to kernel functions. The method is not val-
idated on standard advection or interface tracking problems. No detailed convergence study is provided on the interface
tracking. The mixed Eulerian–Lagrangian method is validated on droplet flows driven by capillary forces. A second-order
convergence in space is observed on the Laplace law.

The hybrid particle/grid method of Ishii et al. [21] combines the use of the Constrained Interpolation Profile CIP approach,
for solving the three-dimensional Eulerian evolutions of two-phase flows with the MPS method, for describing small inter-
facial structures whose space scale is smaller than the local Eulerian mesh size. This MPS/CIP approach considers massless
markers and unstructured grids. The velocities given by the Lagrangian interface description and those provided by the Eule-
rian CIP technique are combined in the mixed cells cut by the interface thanks to linear phase average formulas. No conver-
gence analysis nor convergence study is provided on standard advection test cases. The MPS/CIP method is validated on the
collapse of a water column through a comparison of simulation results and experimental measurements. The qualitative
comparison with the results of Martin and Moyce [35] shows a correct general behavior whereas a gap of 10–20% exists be-
tween the simulation and the measurements concerning the time evolution of the leading edge of the water column. More-
over, the MPS/CIP simulations are similar to those obtained by Hirt and Nichols [19]. However, their VOF method is not up to
date and comparisons to more recent and accurate VOF methods would be interesting. Finally, the MPS/CIP method is ap-
plied to the simulation of the behavior of a liquid film in a fuel injector.

To sum up the existing approaches, the recent works of Bierbrauer and Zhu [4] are dedicated to modeling two-dimen-
sional multiphase flows by combining Eulerian Godunov discretizations to Marker Particle Projection Schemes (GMPPS).
A Lagrangian method, based on massless particles, is designed to track a fluid color function with a high convergence order.
A one-fluid formulation of motion equation is used to model multiphase flows. The GMPPS method is accurately evaluated
on benchmark tests involving analytical velocity fields verifying divergence free conditions. It is demonstrated that the mass
conservation is ensured with a percentage error lower than 1–2%. Moreover, second-order accuracy is measured for all the
simulations.

2.2. The Volume Of Fluid Sub-Mesh (VOF-SM) method

All the methods presented in the previous section are able to solve 2D or 3D multiphase flows and couple the volume or
surface marker description of the interfacial evolution to Eulerian discretizations of the motion equations. However, these
techniques can only describe the Eulerian evolution of a binary volume fraction, solution of Eq. (1) with D ¼ 0. Similarly,
the method presented herein is based on the principle that only a Lagrangian approach can deal with an accurate and
non-diffusive Eulerian description of / solution of (1), for which the scales are smaller than the Eulerian space step. The
aim is to generalize the coupling between particle and Eulerian approaches to all types of scalar equations, to design a gen-
eral method applicable to curvilinear structured grids, to explain the management of particles and their possible redistribu-
tion if required in the case of shearing flows for example and to provide a detailed analysis of space convergence and mass
conservation on standard scalar advection tests.

2.2.1. Initialization of the markers
The computational domain X is discretized according to a three dimensional Eulerian curvilinear staggered grid. The sca-

lar fields (pressure, temperature, color function, species concentration) are resolved on the scalar grid made up of compu-
tational cells centered at the position ðxi; j; k; yi; j; k; zi; j; kÞ; ði; j; kÞ 2 X. The velocity, on the other hand, field is discretized
on a secondary staggered grid. The computational domain is initially seeded with markers, the number of which is equal
in each computational cell. The markers are regularly spaced inside the cell as illustrated in Fig. 1 for a two-dimensional
Cartesian grid with four particles per cell (ppc). Each marker m is assigned the number of its reference cell Km, its initial
volume dVm, its local position in the cell Km ¼ ðxm; ym; zmÞ and a phase data /p

m, which is a function of the initial phase



Fig. 1. A two-dimensional staggered Cartesian grid and marker distribution (4 ppc).

Fig. 2. A local coordinate system of a grid cell centered on the scalar node K.
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distribution. It is stated that /p
m ¼ 1 if m is in the phase p and that /p

m ¼ 0 otherwise. If n particles are distributed VK in each
space directions and in each computational cell, we define dVm ¼ VKm

n3 in three dimensions, where VKm is the volume of the
Eulerian cell Km.

For the sake of convenience in the particle management and transport, the grid ði; j; kÞ 2 X defined in the physical coor-
dinate system is transformed into a unitary regular one (see Fig. 2). Thus, the markers have local coordinates ranging from
�0.5 to 0.5 in the three directions, independently of the local grid size and shape. As a result, the Eulerian velocity field in the
local coordinate system is modified as follows:
v t
iþ1=2;j;k ¼

v iþ1=2;j;k

Dxiþ1=2;j;k
ð3Þ

v t
iþ1=2;k ¼

v i;jþ1=2;k

Dyi;jþ1=2;k
ð4Þ

v t
i;j;kþ1=2 ¼

v i;j;kþ1=2

Dzi;j;kþ1=2
ð5Þ
where index t is associated to the transformed coordinate system and Dxiþ1=2;j;k;Dyi;jþ1=2;k and Dzi;j;kþ1=2 are the local metrics of
the curvilinear Eulerian grid in each space direction. On a staggered Cartesian grid, v t

iþ1=2;j;k;v t
i;jþ1=2;k and v t

i;j;kþ1=2 correspond to
velocity components in the x-, y- and z-directions respectively.

2.2.2. Transport of the markers
2.2.2.1. Management of time. At each time step, the markers are advected over a full time step dt. The physical time step is
split into sub-steps 8t0, according to a specific Courant–Friedrichs–Levy CFL-like condition defined as:
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dt0 ¼ 0:5
jvt

maxj � n
ð6Þ
where jvt
maxj is the maximum value of the velocity norm in the transformed coordinate system, and n is the initial number of

particles per cell in each direction. This CFL condition ensures that the advection sub-step will not transport the particles
beyond the volume dVm that they are supposed to occupy.

2.2.2.2. Velocity interpolation. For each marker, the substep involves the resolution of the relation dxt

dt ¼ vt , which is realized
through a time splitting procedure. The velocity field is either provided by an analytical function or calculated as part of the
resolution algorithm. Thus, we benefit from the discrete knowledge of the velocity on the staggered grid, which must be
interpolated to the marker position. This procedure is achieved for each velocity component through a Q1 interpolation pro-
cedure from the eight velocity nodes surrounding the markers in three dimensions. The interpolation coefficients are easily
known since the velocity nodes are located at coordinates –0.5, 0 or 0.5 in the local transformed coordinate system for any
cell in the computational domain. Therefore, the only variables required for the interpolation subroutine are the surrounding
velocities and the relative position vector dm ¼ ðdm; I; dm; J; dm;KÞ of the marker to one of its surrounding velocity nodes
I; J;K . Assuming this node is the front bottom left corner of the box defined by the eight velocity nodes surrounding the mar-
ker, the cell to particle interpolation of one component v t of the local velocity field vt , in the transformed coordinate system,
is given by the expression:
v t
m ¼ ðl� dm;IÞð1� dm;JÞ � v t

I;J;K þ dm;Ið1� dm; JÞ � v t
Iþ1;J;K þ dm;Idm;J � v t

Iþ1;Jþ1;k þ ð1� dm;IÞdm;J � v t
Iþ1;Jþ1;k

h i
� ð1� dm;KÞ

þ ð1� dm;IÞð1� dm;JÞ � v t
I;J;Kþ1 þ dm;Ið1� dm;JÞ � v t

Iþ1;J;Kþ1 þ dm;Idm;J � v t
Iþ1;Jþ1;kþ1 þ ð1� dm;IÞdm;J

h i
� v t

Iþ1;Jþ1;Kþ1 � dm;k
2.2.2.3. Transport. At first, the velocity is interpolated at the initial position x0
m of the marker, which is advected by the inter-

polated velocity vt;0
m over dt0

2 . It provides an intermediate position defined by:
x0m ¼ x0
m þ

dt0

2
vt;0

m ð7Þ
The transformed velocity field is interpolated at the intermediate position x0m. This provides an intermediate value v0mt of the
particle velocity, which will be used to bring the particle to its final position xf

m in the internal sub-step:
xf
m ¼ x0

m þ dt0
vt;0

m þ v0tm
� �

2
ð8Þ
2.2.2.4. Boundary conditions. During its travel along a time sub-step, a marker may cross a boundary of the computational
domain. Various treatments are obviously required, depending on whether the boundary is open, periodic or solid.

In the case of a periodic boundary condition, the particle exits the computational domain and its new reference node is
located at the opposite side. Its positions in the transformed coordinate system centered on the local node Km are given by
the amount the marker exceeds the periodic boundary. The solid boundary condition type is accounted for by a reflection of
the calculated position into the domain. The markers exceeding open boundaries are given a characteristic phase data value
/m ¼ 10� 1 which renders it possible to treat them differently in the particle to Eulerian mesh projection, i.e. the comput-
ing of the color function, and the redistribution of the particle.

2.2.2.5. Updating the marker data. Each marker is characterized by its reference node m, its volume Vm, its local position in
the reference node cell centered coordinate system and its phase data /m. Along a time sub-step, a marker may move from its
reference cell to a neighboring cell. This data is easily updated since the new reference cell is necessarily a neighboring cell
due to the current condition. Moreover, in the local transformed coordinate system, the determination of the reference cell
and the computation of the new maker local position is straightforward.

The interpolation, transport, boundary condition management and marker data algorithms are general and can be applied
to any orthogonal curvilinear grid, according to the algorithm presented in Fig. 3.

2.2.3. Particle to Eulerian mesh projection
Once the numerical characteristics of the markers are updated, at the end of the transport step, the phase information /m

is projected to the scalar Eulerian grid cells ði; j; kÞ 2 X so as to reconstruct the macroscopic color1 function Ci;j;k. Initially,
each computational cell contains the same number of particles, wherefore each particle transports a fixed amount dVm of
fluid along the simulation. Assuming dVm has a parallelepiped shape in the transformed coordinate system, the particle-
mesh projection can be carried out analytically, in a geometrical manner as illustrated in Fig. 4, as:
interpretation of color in Figs. 4, 9 and 15, the reader is referred to the web version of this article.



Fig. 3. General algorithm of the VOF-SM method.

Fig. 4. Particle to Eulerian grid projection method in two dimensions.
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Cp
i;j;k ¼

P
xm2Xi;j;k;/p

m–10
/p

m � dVm \ Vi;j;kP
xm2Xi;j;k;/p

m–10
dVm \ Vi;j;k

ð9Þ
Here Vi,j,k is the volume of the cell ði; j; kÞ and dVm \ Vi;j;k is its intersection with the volume of fluid accounted for by the
marker m. This expression of the color function provides a statistical value since the volume of phase p in the cell is
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normalized by the volume represented by all the particles inside the cell, and not by the volume of the cell itself. The nor-
malization is compulsory, as the markers do not interact explicitly. Therefore, according to the velocity field, certain particles
may overlap or a cell can contain more particles than n3, inducing a volume lower or higher than the real volume of the cell.

This highlights one of the main features of the method regarding the mass conservation: the calculation of the color func-
tion is highly dependent on the markers’ density, and especially on their proportion according to the function /p

m: Indeed, a
marker isolated in one cell may result in a color function of 1 just because there is no other marker to balance its phase func-
tion /p

m. In order to avoid this numerical artefact, one should redistribute the markers exiting the computational domain into
rarefied cells.

2.2.4. Redistribution of the particles
According to the streamlines of the flow, the particles can converge or diverge from one area to another. In this way, cer-

tain Eulerian grid cells are free from particles at certain time steps. This phenomenon has been classically observed in par-
ticle numerical methods such as [3,9,25,7], in which various remeshing methods to redistribute the particles over time have
been proposed.

Here, we choose to favor the mass conservation property to redistribute the particles. Indeed, in all the investigated sim-
ulations, empty Eulerian cells were encountered in simulation problems where inlet and outlet boundary conditions were
stated. In these configurations, the total number of particles initially lying in the computational domain is a priori not con-
stant over time. The mass conservation is ensured by injecting particles in boundary cells where an inlet boundary condition
is imposed, or by redistributing the particles exiting the computational domain at the outlet into cells containing the smaller
number of particles. A specific variable Lim is defined to characterize the property of each Eulerian cell with respect to the
boundary position C or the interior of X. The boundary C is made of 6 (4 in two-dimensions) boundary parts Cleft ;Cright ;

Cbottom;Ctop;Cbehind and Cfront such as C ¼ Cleft [ Cright [ Cbottom [ Ctop [ Cbehind [ Cfront . We have:
Limi;j;k ¼ 1 if xi;j;k 2 X and xi;j;k 2 C

Limi;j;k ¼ 2 if xi;j;k 2 Cleft

Limi;j;k ¼ 3 if xi;j;k 2 Cright

Limi;j;k ¼ 4 if xi;j;k 2 Cbottom

Limi;j;k ¼ 5 if xi;j;k 2 Ctop

Limi;j;k ¼ 6 if xi;j;k 2 Cbehind

Limi;j;k ¼ 7 if xi;j;k 2 Cfront
If it is assumed that a particle m belongs to Xi; j; k, i.e. the Eulerian control volume surrounding the Eulerian node ði; j; kÞ, this
particle is located according to its relative position to the boundaries as follows (see Section 2.2.2):
/m ¼ 1 if xi;j;k 2 Cleft and xm < �0:5
/m ¼ 1 if xi;j;k 2 Cright and xm > �0:5
/m ¼ 1 if xi;j;k 2 Cbottom and ym < �0:5
/m ¼ 1 if xi;j;k 2 Ctop and ym > �0:5
/m ¼ 1 if xi;j;k 2 Cbehind and zm < �0:5
/m ¼ 1 if xi;j;k 2 Cfront and zm > �0:5
All the particles marked by /m ¼ 1 are redistributed in the cells where the particle number is the minimum at each time
step. This procedure ensures that no empty cell is created during time. It is efficient in curvilinear coordinates as the redis-
tribution procedure uses the position of the particles in the local transformed coordinate system (see Section 2.2.1).

3. Application of the VOF-SM method to scalar interface tracking problems

A set of test cases was used to study the ability of the method to accurately describe strongly distorted interfaces. Stretch-
ing and shearing stresses are of great importance in multiphase flows, and the major limitation of classical methods in
accounting for small scales generated by those effects is the grid size. The following test cases aim at presenting the perfor-
mances of the Lagrangian sub-grid description. The precision and the performance of the method are quantitatively vali-
dated by its ability to ensure mass conservation along the simulation, as well as its capability of representing the
concentration field as compared to a reference state. The initial state can be taken as the reference state if no exact solution
is available. In this case, the accuracy is achieved through a time reverse procedure, which enables the calculation of the L1
error norm between this initial state and the final state, defined as
Ea ¼
X
ði;j;kÞ�X

Ai;j;kjC0
i;j;k � Cf

i;j;kj ð10Þ
Here, Ai;j;k is the area (volume) of the cell ði; j; kÞ and C0
i;j;k and Cf

i;j;k are respectively the initial and final values of the concen-

tration field in Xi;j;k. The order of convergence is deduced from the calculated errors by the expression: # ¼ InðEð2NÞ=EðNÞÞ
Inð1=2Þ where
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EðNÞ and Eð2NÞ are the L1 error norm calculated with N and 2N Eulerian grid cells, respectively. The mass conservation accu-
racy is evaluated at each time step NT, through the calculation of the relative error of the total mass in the computational
domain:
Fig. 5.
studies
Em ¼
X
ði;j;kÞ�X

Ai;j;kC0
i;j;k �

X
ði;j;kÞ�X

Ai;j;kCNT
i;j;k

0
@

1
A, X

ði;j;kÞ�X

Ai;j;kC0
i;j;k ð11Þ
The physical time t is equal to NTdt, where dt is the time step.

3.1. Shearing of a circle in a vortex velocity field

This test case is referred to as the vortex in a box problem or reverse vortex flow. A solenoidal velocity field is imposed,
stretching the fluid into a thin continuous spiral-shaped filament converging to the center of the domain. Initially, a circular
area of fluid, 0.15 m in diameter, is located at the coordinates ð0:5; 0:75 mÞ of a unit square computational domain. The pre-
scribed velocity field is described by the periodic stream function
Wðx; yÞ ¼ 1
p

sin2ðpxÞsin2ðpyÞcosðpt=TÞ
where T is the period of the velocity fluctuations. The initial circle exhibits the largest deformation at t ¼ T=2, and returns to
its initial position at t ¼ T , at the end of the full calculation. The total mass of the computational domain can be compared to
the initial mass along the calculation while the L1 error norm compares the initial and final concentration fields.

The effect of the particle number per cell as well as the influence of the CFL condition are investigated in terms of accuracy
and mass conservation, with a regular and an irregular grid.

3.1.1. Regular mesh
For the lowest number of particles, i.e. four particles per cell (ppc), and a CFL condition of 1, based on the maximum veloc-

ity in the domain, the method exhibits an order of accuracy higher than 2, and error levels nearly one order of magnitude
lower than [4] with a particle method, and at least two orders of magnitude lower than [33] with an improved VOF approach
(Fig. 5). The order of accuracy is conserved when increasing the number of particles from 2 to 4 per direction per cell and
diminishing the CFL-condition from 1 to 0.1 (Fig. 6).

The L1 error norm is highly dependent on the CFL-condition, whereas the number of particles weakly influences the accu-
racy, especially at a low CFL-condition. For a given grid size, the CFL-condition defines the accuracy of the time discretization.
At each iteration of the global resolution algorithm, the same velocity field is interpolated along the internal sub-steps of the
Advection of a circular concentration field in a vortex velocity field on a regular grid – absolute error Ea versus grid size compared with previous
of [33] and [4] – CFL = 1 and 4 ppc .



Fig. 6. Advection of a circular concentration field in a vortex velocity field on a regular grid – absolute error Ea versus grid size for several particle densities
and CFL conditions.

Table 1
Advection of a circular volume fraction field in a vortex velocity field – absolute error Ea obtained with several numbers of particles per cell – CFL = 1 and 1282

grid.

ppc Ea error norm

4 9.083767898927395E�007
9 3.915566659799275E�007
16 2.986757099972148E�007
25 2.424825734140292E�007
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VOF-SM method. Consequently, the error introduced in the transport of the markers increases with the CFL-condition. For a
sufficiently low CFL-value, the number of internal sub-steps equals one regardless of the initial particle density (from 4 to
16 ppc) and the error introduced by the velocity interpolation is independent of the ppc number. This justifies the superpo-
sition of the convergence curves when CFL = 0.1.

As shown in Table 1, the decrease of the L1 error gradually drops with an increasing number of particles per cell, thus
indicating that the effect of the particle number becomes saturated. Inversely, the method exhibits an order higher than
2 for the convergence in time (Table 2).

Above a grid spacing of 1/64, in the 4 ppc case, the relative error on the total mass reaches levels lower than 1 (Fig. 7). The
mass conservation property is enhanced by an increasing number of particles per cells (Fig. 8), whereas it is poorly affected
by the CFL-condition (Fig. 9). The influence of the initial particle number in each cell is related to the way the color function is
calculated (cf Section 2.2.3): a cell containing particles at /m ¼ 1 can be a full liquid cell or an interfacial cell. If it does not
contain any particle at /m ¼ 0, the calculated color will be 1, and this absence of particles, i.e. /m ¼ 0, can be due either to an
artificial particle rarefaction effect, driven by the velocity field, or to a physical effect.

3.1.2. Irregular mesh
In practical applications, the computational domain is often discretized according to an irregular mesh, presenting coarse

and fine areas, adapted to complex geometries or physical specificities such as boundary or mixing layers encountered, for



Table 2
Advection of a circular volume fraction field in a vortex velocity field – absolute error Ea obtained with several CFL conditions – 4 ppc and 1282 grid.

Method Econc EC

VOF-SM 3.6477e�10 0
TVD 1.8497e�3 0.1801
WENO 1.3399e�3 0.1018

Fig. 7. Advection of a circular concentration field in a vortex velocity field on a regular grid – error Em on the total mass versus time for several grid sizes –
CFL = 1 and 4 ppc.

Fig. 8. Advection of a circular concentration field in a vortex velocity field on a regular grid – error Em on the total mass versus time for several particle
densities – CFL = 1 and 1282 grid.
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Fig. 9. Advection of a circular concentration field in a vortex velocity field on a regular grid – error Em on the total mass versus time for several CFL
conditions – 1282 grid and 4 ppc .
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instance, in fuel injection issues. The ability of the method to account for interface transport and distortions in such situa-
tions is investigated in the reverse vortex flow problem, through a specific grid presenting both fine and coarse areas,
regularly arranged as shown in Fig. 10 for a 1282 grid. According to Fig. 11, the influence of particle density on the accuracy
is similar to the regular mesh case, however a different behavior is observed for the CFL parameter, which not only affects
the precision but also the order of accuracy (Fig. 12). The decrease in order with an increasing CFL-condition is related to
the number of internal sub-steps in the method. Indeed, a change in the CFL-value from 0.1 to 0.2, implies an increase in
the iteration number from 1 to 2, whereas the decrease in the order occurs precisely between those values.

As for the regular mesh case, the CFL-condition only weakly affects the mass conservation along the simulation (Fig. 13).
Inversely, the influence of the particle density is higher in the irregular case, as shown in Fig. 14: the increase in the total
mass observed for 4 ppc, due to a lack of particles, vanishes with 16 ppc.

3.2. Shearing of a sphere in a vortex velocity field

The three-dimensional version of the method is investigated through the shearing of a sphere in a time periodic incom-
pressible flow field combining a deformation in two perpendicular planes:
uðx; y; zÞ ¼ 2sin2ðpxÞsin2ð2pyÞsin2ð2pzÞcosðpt=TÞ
vðx; y; zÞ ¼ �sin2ð2pxÞsin2ðpyÞsin2ð2pzÞcosðpt=TÞ
wðx; y; zÞ ¼ �2sin2ð2pxÞsin2ð2pyÞsin2ðpzÞcosðpt=TÞ
Initially, the sphere is located at the position (0.35, 0.35, 0.35) in a unit computational domain, and its radius is 0.15 m.
The mass variation is evaluated at each time step, and the accuracy is achieved by comparing the initial ðt ¼ 0 sÞ and the final
ðt ¼ T=2Þ concentration fields, as in the 2D reverse vortex case. The period of the velocity fluctuations is T ¼ 3 s.

The isosurface 0.5 of the color function is displayed in Fig. 15, for a 643 grid, 4 ppc and a CFL condition of 0.1, at the time
t ¼ 0 s;t ¼ 0:75 s;t ¼ 1:125 s;t ¼ 1:5 s;t ¼ 1:875 s;t ¼ 2:25 s and T ¼ 3 s. As expected, the couples 0 s/3 s, 0.75 s/2.25 s and
1.125 s/1.875 s are identical. The convergence properties experienced on the reverse vortex flow are also exhibited in this
3D case. The maximum deformation that occurs at t ¼ T=2 induces an increase of 2% in the total volume for 9 ppc on a
643 grid, which is similar to the results obtained by [13] with a hybrid particle level-set method on a 1003 grid.

3.3. Deformation of a circle in a converging–diverging pipe

3.3.1. Cartesian grid simulations
A circular area of liquid is advected by an analytic solenoidal velocity field, in a converging–diverging channel. The two-

dimensional velocity components are



Fig. 10. An irregular mesh with 1282 cells.

Fig. 11. Advection of a circular concentration field in a vortex velocity field on an irregular grid – absolute error Ea versus grid size for several particle
densities – CFL = 1.
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Fig. 12. Advection of a circular concentration field in a vortex velocity field on an irregular grid – absolute error Ea versus grid size for several CFL
conditions.

Fig. 13. Advection of a circular concentration field in a vortex velocity field on an irregular grid – error Em on the total mass versus time for several
CFLconditions – 1282 grid and 4 ppc.
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uðx; yÞ ¼ 1� y
f ðxÞ

� �2
" #

1
f ðxÞ if y < f ðxÞ ð12Þ

uðx; yÞ ¼ 0 otherwise ð13Þ



Fig. 14. Advection of a circular concentration field in a vortex velocity field on an irregular grid – error Em on the total mass versus time for several particle
densities – CFL = 1 and 1282 grid.
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and
uðx; yÞ ¼ 1� y
f ðxÞ

� �2
" #

y

f ðxÞ2
d
dx

f ðxÞ if y < f ðxÞ ð14Þ

uðx; yÞ ¼ 0 otherwise ð15Þ
where f ðxÞ ¼ 1� 3
4 expð�2x2Þ is the shape function of the channel. The liquid is initially located at the position (�1.95 m,0 m)

of the computational domain presented in Fig. 16. This test case has already been investigated by [16]. They compared level-
set and VOF simulations to front-tracking reference results on a 256 � 128 grid. The non-conservative behavior of the level-
set solution provided a less accurate solution in the larger curvature zones of the interface as compared to the VOF method
they used. The VOF-SM solution for a 256 � 128 grid is better than the VOF solution of [16]. Two characteristic times are
considered in the comparisons, t ¼ 1:787109375 s demonstrating a fish like shape of the interface and t ¼ 2:958984375 s
where a frisbee shape can be observed. The same time step as in [16] is used, Dt ¼ 0:00146484375 s. The results of the
VOF-SM approach are almost superimposed to the front-tracking reference solution at the two chosen times. The particles
are plotted in Figs. 17 and 18, which illustrate the effect of the particle redistribution on an open-boundary case. Without
redistribution, the particles are advected towards the outlet boundary and the domain is progressively emptied of particles.
The redistribution step provides the emptied cells with the outgoing particles that are compulsory in order to account for
problems such as injection.

3.3.2. Curvilinear grid simulations
The advection of an initial circular Volume Of Fluid function, presented in the previous section, is subsequently investi-

gated on a curvilinear orthogonal grid, as presented in Fig. 19, with 128 � 64 grid points. The curvilinear meshes were gen-
erated with the open source software GridGen [17]. The grid lines followed the stream lines of the velocity field 12, 13, 14
and 15 such that:
uðn;gÞ ¼ � ð1� g
FðnÞ

� �2

Þ 1
FðnÞ

" #2

þ 1� g
FðnÞ

� �2
 !

3ng
FðnÞ2

expð�2n2Þ
" #2

0
@

1
A

1=2

vðn;gÞ ¼ 0
where n and g are the curvilinear coordinates and FðnÞ ¼ 1� 3
4 expð2n2Þ. The curvilinear coordinates are comprised within the

ranges �2:5 6 n 6 2:5 and �FðnÞ 6 g 6 FðnÞ.
The convergence of the VOF-SM method on curvilinear meshes was studied on three grids containing 256 � 128, 512 � 256

and 1024 � 512 discretization points. Three particles per direction and cell were used. The results of the comparisons are



Fig. 15. Advection of a sphere in a vortex velocity field – isosurface C ¼ 0:5—643 grid size and 9 ppc.
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presented in Fig. 20. It can be observed that the VOF-SM simulations provided comparable solutions even on the coarser grid.
At t ¼ 1:787109375 s, small discrepancies are noticed in the middle of the tail of the fish-shaped interface whereas the larger
gap at t ¼ 2:958984375 s is localized at the right hand side of the frisebee interface shape. The curvilinear VOF-SM simulations
are in very good agreement with the front-tracking reference results of [16]. If attention is paid to the relative accordance of
the Cartesian and curvilinear VOF-SM simulations with the front-tracking data, it can be observed that on a 1024 � 512 grid,
which is finer than the 256 � 128 Cartesian VOF-SM grid, the Cartesian VOF-SM simulations are sligtly superior to the curvi-
linear results. This fact is mainly due to the error made in the discretization and velocity interpolation of the VOF-SM method.



Fig. 16. Advection of a circular shape in a converging–diverging channel by a solenoidal velocity field. Comparison of the VOF-SM and front-tracking
solutions [16] – CFL = 1 and 256 � 128 grid and 4 ppc.

Fig. 17. Advection of a circular shape in a converging–diverging channel by a solenoidal velocity field. Particle distribution at t = 2.96 s with particle
redistribution.

Fig. 18. Advection of a circular shape in a converging–diverging channel by a solenoidal velocity field. Particle distribution at t = 2.96 s without particle
redistribution.
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Fig. 19. Orthogonal curvilinear grid of the converging–diverging channel of [16] – 128 � 64 grid points.

Fig. 20. Deformation of a circular interface in the converging–diverging channel of [16] – comparison between the curvilinear simulations on 256 � 128,
512 � 256 and 1024 � 512 grids for t ¼ 1:787109375 s (top figures) and t ¼ 2:958984375 s (bottom figures).
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Indeed, the edges of the curvilinear cells are assumed linear, and in a global point of view, the curvilinear VOF-SM simulations
are accurate. Similarly to the Cartesian simulations, the redistribution procedure of the particle is efficient in curvilinear grid
simulations. The objective of this approach is to remain identical regardless of the orthogonal structured grid used. No specific
discretizations or particle management are required in spherical, cylindrical or curvilinear grids as the VOF-SM method works
in transformed coordinate systems.

4. Application of the VOF-SM method to scalar transport problems

The numerical simulation of the transport of a diffuse scalar quantity such as the concentration of a chemical specie, is
classically modeled by the continuum Eq. (1) including a time derivative term, a hyperbolic advection term and a diffusive
term. Many research efforts have been devoted to the discretization and solution of this equation, since a large number of
industrial and environmental applications are concerned with the local description of the concentration gradients. All the
existing methods and numerical schemes induce artificial diffusion or spurious oscillations of the concentration field
[36,37,55,38,12,20,11] or [5]. In this section, improvements brought on by the VOF-SM method are evaluated and compared
to the previous numerical studies. Only the advection term of the transport equation is considered in this investigation.
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4.1. Advection of a complex 1D concentration profile

The 1D test case of the advection with a constant velocity of a complex concentration profile is considered first. The initial
shape of C is composed of a Gaussian, a square, a triangular and an elliptical wave, as initially proposed by [22]. This problem
is complex as it combines sharp features as well as regular characteristics of the concentration. The present test case has
been widely used in the literature to validate the accuracy of discretization schemes devoted to the approximation of hyper-
bolic advection or transport equations [22,46,12]. The constant velocity is equal to 1 m s�1, the 1D calculation domain is de-
fined by �1 6 x 6 1 and the concentration profile reads:
Table 3
One-dim

Grid

16
32
64
128
256
512

Fig. 21
(long d
CðxÞ ¼ expð�logð2Þðxþ 0:7Þ2=0:0009Þ if � 0:8 6 x 6 �0:6
CðxÞ ¼ 1 if � 0:4 6 x 6 �0:2
CðxÞ ¼ 1� j10ðx� 0:1Þj if 0 6 x 0:2

CðxÞ ¼ 1� 100ðx� 0:5Þ2
� 	1=2

if 0:4 6 x 0:6

CðxÞ ¼ 0 otherwise
Periodic conditions are imposed at the boundaries of the calculation domain. The numerical solution is compared to the
analytical one, i.e. the initial solution, after 4 periods T. Concerning the VOF-SM method, the quality of the numerical solution
is independent on the number of simulated periods, contrary to other approaches such as WENO or TVD schemes [12]. A
CFL-number of 1 is considered in this section.

The evolution of the absolute error on concentration versus grid refinement is presented in Table 3 for the VOF-SM
method, the Lax-Wendrof TVD scheme [28] and a 5th order WENO scheme [22]. This error Econc is calculated as
Econc ¼ jCðx; t ¼ 0sÞ � Cðx; t ¼ 3s ¼ TÞj ð16Þ
Regardless of the grid size, the VOF-SM method provides an almost zero computer error. The Lagrangian characteristic of the
VOF-SM method induces no numerical diffusion and preserves the exact solution over time. On the contrary, the discretized
TVD and WENO approaches do not preserve the initial shape of C and create spurious numerical diffusion or distortion of
ensional advection of a complex concentration field – absolute error Econc versus grid size obtained with the VOF-SM, TVD and WENO methods.

VOF-SM TVD [28] WENO RK3 [22]

1.57e�15 0.91e+0 0.89e+0
1.62e�15 0.89e+0 0.86e+0
1.95e�15 0.57e+0 0.39e+0
1.97e�15 0.15e+0 0.15e+0
1.97e�15 8.48e�2 6.32e�2
1.98e�15 5.51e�2 2.72e�2

. Simulation of the transport of a complex 1D concentration field – comparison between the VOF-SM (line), TVD (dotted-dashed line) and WENO
ashed line) approaches on a 512 grid.
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the concentration field. These behaviors are illustrated in Fig. 21. They have also been observed with other approximation
schemes based on spectral discretizations [36], Piecewise Polynomial methods (PPM) or Piecewise Rational Methods
(PRM) [55].

4.2. Advection of a concentration profile in a vortex velocity field

The two-dimensional transport of a concentration cone is now considered in a vortex without deformation. This test case
is similar to the rotating cosine hill used, for instance, by [36], however, it is more difficult as the cone shape is sharper than
the cosine hill. In a 1-m square calculation domain, the initial concentration profile reads
Table 4
Advecti
after fo

Grid

16
32
64
128
256
CðxÞ ¼ 0:15� R
0:15

if R 6 0:15

CðxÞ ¼ 0 otherwise
where R ¼ ððx� 0:5Þ2 þ ðz� 0:25Þ2Þ1=2. The vortex velocity fields is expressed as
ux ¼ �
p
2
ðz� 0:5Þ ð17Þ

uz ¼
p
2
ðx� 0:5Þ ð18Þ
A new error EC is estimated, which compares the value of the maximum of the cone at t ¼ 0 s to its value after one advection
turn:
EC ¼ jmaxðCðx; t ¼ 0ÞÞ �maxðCðx; t ¼ 3ÞÞj ð19Þ
Table 4 presents the evolution of the error Econc according to the mesh size and the CFL number. The results are obtained with
the VOF-SM method and three particles per direction. An almost second-order convergence is observed regardless of the CFL-
number, and the error can be slightly reduced by diminishing the CFL-number. However, Econc remains practically the same
when the time step is increased. By paying attention to the conservation of the maximum of the cone after one turn through
EC in Table 5, it can be seen that the VOF-SM method almost perfectly conserves the maximum concentration value whereas
classical approaches, such as the TVD or WENO schemes, induce a dramatic loss of the cone peak. The results obtained in this
section are superior to those arising from simulations performed with other methods of the literature, such as spectral or
spline-based schemes [36] or flux-corrected transport algorithms [20].

Fig. 22 presents the concentration profiles calculated with the VOF-SM, TVD and WENO approaches. The VOF-SM solution
benefits from the Lagrangian character of the method and advects exactly the cone shape of the concentration. Contrarily, for
this simple example, the Eulerian WENO and TVD schemes induce a loss of the cone maximum and a smoothing of the con-
centration profile in the peak zone.

4.3. Shearing of a cone in a shearing vortex velocity field

The deformation of a concentration cone in a vortex velocity field was investigated. This test case is difficult as the cone
shape is strongly distorted in a first step, whereas, after one period of simulation, it returns to its initial shape. The initial
concentration profile is identical to that in the previous test case, whereas the deformation vortex velocity fields is the same
as the one used in Section 3.1.

Tables 6 and 7 present the absolute error Econc and the space convergence order of the VOF-SM method according to the
number of particles per direction and cell as well as to the CFL-number. An almost third order convergence rate is observed
whatever the numerical conditions, which is in good agreement with the results obtained on interface tracking. Reducing the
CFL number or the number of particles per cell leads to a weak reduction of Econc . It can be concluded that the VOF-SM meth-
od remains very efficient for dealing with concentration profiles that interact with shearing velocity fields, such as turbulent
flows for instance, even when large time steps and coarse distributions of particles are considered. By comparing the VOF-SM
method to TVD and WENO scheme simulations in Table 8, it is possible to demonstrate that the VOF-SM method provides
results that are almost 6 orders of magnitude better than the classical TVD and WENO approaches. The same conclusion
on of a concentration cone in a vortex velocity field – absolute error Econc versus grid size obtained with the VOF-SM method for several CFL-numbers
ur turns – three particles are initially distributed in each space direction and in each cell.

CFL ¼ 0:33 # CFL ¼ 0:66 # CFL ¼ 1 #

9.0308e�5 1.0711e�4 1.0759e�4
3.0444e�6 4.89 6.9955e�6 3.94 7.1784e�6 3.91
7.7136e�7 1.98 1.7728e�6 1.98 1.8191e�6 1.98
1.9356e�7 1.99 4.4487e�7 1.99 4.5650e�7 1.99
4.8436e�8 2.00 1.1140e�7 2.00 1.1430e�7 2.00



Fig. 22. Simulation of the transport of a cone in a vortex velocity field – comparison of 2D concentration profiles (extruded in 3D) between the VOF-
SM,WENO and TVD methods from left to right on a 642 grid.

Table 6
Advection of a concentration cone in a shearing vortex velocity field – absolute error Econc versus grid size obtained with the VOF-SM method for several CFL-
numbers – two particles are initially distributed in each space direction and in each cell – T ¼ 8 s in Eq. (12).

Grid CFL ¼ 0:33 # CFL ¼ 0:66 # CFL ¼ 1 #

16 1.5571e�5 4.8865e�5 7.1459e�5
32 1.5175e�6 3.36 5.3711e�6 3.19 8.3532e�6 3.10
64 1.9621e�7 2.95 3.3205e�7 4.02 1.1775e�6 2.83
128 2.4747e�8 2.99 1.0124e�7 1.71 1.4759e�7 3.00
256 3.1212e�9 3.00 1.2769e�8 2.99 1.8873e�8 2.97

Table 5
Advection of a concentration cone in a vortex velocity field – values of Econc and EC obtained with the VOF-SM, TVD and WENO methods after one turn – three
particles are initially distributed in each space direction and in each cell – CFL = 1 and 642 grid.

Method Econc EC

VOF-SM 3.6477e�10 0
TVD 1.8497e�3 0.1801
WENO 1.3399e�3 0.1018
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Table 7
Advection of a concentration cone in a shearing vortex velocity field – absolute error Econc versus grid size obtained with the VOF-SM method for several CFL-
numbers – three particles are initially distributed in each space direction and in each cell – T ¼ 8 s in Eq. (12). Advection of a concentration cone in a shearing
vortex velocity field – absolute error Econc versus grid size obtained with the VOF-SM method for several CFL-numbers – three particles are initially distributed
in each space direction and in each cell – T ¼ 8 s in Eq. (12).

Grid CFL ¼ 0:33 # CFL ¼ 0:66 # CFL ¼ 1 #

16 8.6257e�6 5.7282e�5 5.1089e�5
32 1.1587e�6 2.90 4.3713e�6 3.71 6.9203e�6 2.88
64 1.4793e�7 2.97 6.0580e�7 2.85 8.9201e�7 2.96
128 1.8597e�8 8.39 8.3935e�8 2.85 1.1598e�7 2.94
256 2.3272e�9 3.00 1.0007e�8 3.07 1.3828e�8 3.07

Table 8
Advection of a concentration cone in a shearing vortex velocity field – values of Econc and EC obtained with the VOF-SM, TVD and WENO methods – three
particles are initially distributed in each space direction and in each cell – CFL ¼ 1 and 642 grid – T ¼ 2 s in Eq. (12).

Method Econc EC

VOF-SM 1.8493e�8 1.7881e�7
TVD 2.7737e�2 0.7580
WENO 2.6694e�2 0.7314

Fig. 23. Simulation of the transport of a cone in a deformation velocity field – initial condition of the 2D concentration profile (extruded in 3D) on a 642 grid.
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applies to other methods of the literature [36] such as the quintic spline interpolation QSTSE method that has been inves-
tigated on a similar test case called deformative flow of Smolarkiewicz. In simulations with QSTSE, Nguyen and Dabdub [36]
obtained an error EC = 0.1749, comparable to the one provided by the TVD and WENO schemes. This error is again six orders
of magnitude larger than the one obtained with VOF-SM.

The initial concentration profile used for the simulations, extruded in three dimensions, is plotted in Fig. 23. The range
and shape of the concentration values are similar to those in the case of the vortex velocity field. After half a period, the ini-
tial cone became strongly distorted (see Fig. 24) ressembling a spiraling snake. It could be observed that the TVD and WENO
scheme did not preserve the sharpness of the concentration and induced an important numerical diffusion, due to velocity
gradients. On the contrary, the VOF-SM method preserves a more compact concentration field, with maximum values that
are higher than those obtained with the TVD and WENO schemes. Fig. 25 presents the extruded 3D concentration results
after one period. Theoretically, the initial condition must be recovered after 1 turn. The VOF-SM method achieves this prop-
erty almost perfectly, with absolute and peak maximum errors of 10�8 and 10�7. Contrarily, the TVD and WENO schemes
have induced irreversible modifications of the stretched cone, under numerical diffusion effects. Dramatic differences are
observed between the initial cone shape and the simulations provided by these classical approaches.



Fig. 24. Simlation of the transport of a cone in a vortex velocity field – comparison of 2D concentration profiles, after half a period, between the VOF-SM,
WENO and TVD methods, from left to right and top to bottom, on a 642 grid.
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4.4. Treatment of diffusion and 3D extensions

The point of building an accurate numerical method such as the VOF-SM for dealing with the advection part of a transport
equation is to be able to simultaneously treat the diffusion of the concentration. Several methods exist to achieve it, based
either on splitting techniques or direct approximations of the entire transport equation [37]. This point is not addressed in
the present article but will be considered in future studies dedicated to the VOF-SM method.

Concerning the three-dimensional simulation of the transport of a concentration, the VOF-SM method complied with
similar results as those presented in the sections devoted to interface tracking problems. The same qualities were observed,
i.e. no numerical error arose with pure advection velocity fields whereas low diffusion and artificial deformation effects were
measured when deformation fields were concerned. The results compared favorably to existing TVD or WENO schemes,
similarly to what was demonstrated in two dimensions in previous sections.
5. Simulating free-surface flows with the VOF-SM method

The abilities of the VOF-SM method to simulate incompressible free surface flows are reported in this section. The VOF-
SM approach is coupled to an augmented-Lagrangian Navier–Stokes solver that is efficient in the presence of variable density
and viscosity fields. This numerical modeling has been detailed and validated by the authors in previous articles dedicated to
laminar and turbulent two-phase flows [49,50,52,27,26,54]. Two classical free-surface flows are considered related to a 2D



Fig. 25. Simulation of the transport of a cone in a vortex velocity field – comparison of 2D concentration profiles (extruded in 3D), after one period, between
VOF-SM, WENO and TVD methods, from left to right and top to bottom,on a 642 grid.

Table 9
Characteristics of the fluids for the filling of a cavity by a viscous jet.

q l

Viscous polymer 1000 kg m�3 1000 Pa s
Air 1:1768 kg m�3 1:85 10�5 Pa s
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jet buckling in a square cavity and a three-dimensional dam-break flow in a tank. These problems are interesting in order to
validate the numerical simulations as they are related to experiments or analytical studies.

5.1. Two-phase flow model

In the Eulerian approach, it is important to distinguish various media (gas or liquid) present in the calculation domain in
order to accurately model incompressible two-phase flows. A characteristic or color function /, i.e. the Volume Of Fluid
function [19], allows to locate a variety of fluids thanks to an advection equation on the presence functions / defined in Sec-
tion 1. The interface between two media is defined as / ¼ 0:5. Classically, the numerical model for an isothermal incom-
pressible flow, called single-fluid or one-fluid model [43], reads :



Fig. 26. Injection of a viscous fluid in a cavity – isocontour C = 0.5 � Re = 0.6:H/D = 5 and t ¼ 0:76 s (a), H/D = 9 and t ¼ 0:62 s (b), H=D ¼ 10 and t ¼ 0:58 s
(c), H=D ¼ 15 and t ¼ 0:48 s (d), Re = 0.5: H=D ¼ 5 and t ¼ 1:15 s (e), H=D ¼ 9 and t = 0.64 s (f), H/D = 10 and t ¼ 0:64 s (g), H=D ¼ 15 and t ¼ 0:54 s (h),
Re = 0.3: H/D = 5 and t ¼ 1:8 s (i), H=D ¼ 9 and t ¼ 1:5 s (j), H=D ¼ 10 and t ¼ 1:17 s (k), H=D ¼ 15 and t ¼ 0:75 s (l), Re = 0.1: H/D = 5 and t = 4.4 s (m),
H=D ¼ 9 and t ¼ 3:0 s (n), H=D ¼ 10 and t = 3.1 s (o), H=D ¼ 15 and t ¼ 2:5 s (p), 1282 grid and 9 ppc.
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q ¼ q1/þ ð1� /Þq0 ð23Þ
l ¼ l1/þ ð1� /Þl0 ð24Þ
where q and l are the density and the viscosity of the single fluid, respectively, formulated in terms of the local characteristic
function /; t is the time variable, u the velocity, p the pressure and g the gravity. The density and viscosity in the liquid and
gas fluids forming the free-surface flow are, respectively, defined as q1 and l1 for the liquid and q0 and l0 for the gas. The
surface tension forces are not considered in this work. However, numerous investigation in the literature exist which include
their effects as a volume force in the momentum equations [6].

5.2. Numerical methods dedicated to flow solver

An augmented Lagrangian approach was implemented to treat the coupling between the pressure and the velocity in the
mass and momentum conservation Eq. (24) (Fortin and Glowinski [15], Vincent et al. [50,52,53]). This technique is based on a
minimization algorithm in which a pressure–velocity saddle point is solved. An Uzawa method was implemented to numer-
ically resolve the optimization problem. Implicit finite volumes on a fixed Cartesian staggered grid were used to discretize
the motion equations. The time derivatives were approximated by a first order Euler scheme whereas the spatial fluxes were
interpolated by centered schemes of second order. The resulting linear system was solved in two dimensions by a direct LU-
type solver (PARDISO [44]) and in three dimensions by an iterative procedure of bi-conjugate gradient for a non-symmetric
matrix BiCGSTAB II [48], preconditioned with an incomplete Gauss factorization ILU [18]. All the numerical methods are
available in the Computational Fluid Dynamics (CFD) library Aquilon, developed by the TREFLE laboratory.

5.3. Jet injection in a square cavity

As a first example, a newtonian highly viscous liquid jet filling a square box that is open in its upper part, and initially full
of air, is considered. The liquid, i.e. a polymer, is injected at the top of the box and flows to the bottom, accelerated by gravity.
The characteristics of the flow are summarized in Table 9. Several injection velocities U and diameters D are considered to
illustrate the various possible jet behaviors and topologies during the filling of the cavity:
0:1 m s�1
6 U 6 9 m s�1

0:067 m 6 D 6 0:2 m
. Stability diagram for the injection of a viscous fluid in a cavity – comparison to experimental and analytical reference values – black circles
ond to stable jets, black squares to unstable jets and stars to the reference transition stability curve.



Fig. 28. Definition sketch of the three-dimensional dam-break flow of [45] – 600 � 20 � 100 grid.

Fig. 29. Three-dimensional dam-break flow – isosurface C = 0.5. 600 � 20 � 100 grid and 27 ppc.
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According to the theoretical and experimental investigations of [10], the buckling of a two-dimensional newtonian jet occurs
when the following conditions are satisfied:
Re < 0:56 and H=D > 3p ð25Þ
where Re ¼ q1DU
l1

;H ¼ 1 m is the height of the square cavity and D is the diameter of the injector. Under these conditions, the

jet alternatively travels through the computational domain from the left to the right, producing a so-called buckling
phenomenon. The piling up of the liquid obstructs the oncoming flow that is consequently deviated. This results in a succes-
sion of layers between which air pockets can be trapped.



Fig. 30. Three-dimensional dam-break flow – Volume Of Fluid function C ¼ 1 in red and C ¼ 0 in blue) and velocity field in an X–Y slice are presented for
t ¼ 0:24 s and t ¼ 0:35 s – 600 � 20 � 100 grid and 27 ppc . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

S. Vincent et al. / Journal of Computational Physics 229 (2010) 73–106 99
The results of the simulation for several Re and H=D values are displayed in Fig. 26. The cavity filling under a viscous liquid
jet injection is homogenous or undergoes buckling as predicted by theory [10]. As demonstrated in Fig. 26, trapped air par-
cels are captured by the method for Re ¼ 0:3 and H=D ¼ 15 or Re = 0.1 and H=D ¼ 9, as a result of its non-diffusive behavior.
The size of the air droplets is in this case determined by the size of the grid cell.

The above-mentioned test case illustrates the ability of the method to account for injection issues, through the redistri-
bution of out-coming particles in the domain. Indeed, particles are expelled outside the domain, at the upper limit, by the
outgoing velocity field. As described in Section 2.2.4, these particles are redistributed in rarefied cells, especially in cells
corresponding to the injection area. Thus, the injection area is continuously seeded with new particles.

A stability diagram is presented in Fig. 27. The theoretical and experimental characteristic values of Re and H=D leading to
instability are reported in this figure. Sixteen simulations have been carried out in order to characterize the numerical behav-
ior of the jet in terms of buckling. A very good agreement was found between the reference values of [10] and the VOF-SM



Fig. 31. Three-dimensional dam-break flow – Volume Of Fluid function C ¼ 1 in red and C ¼ 0 in blue) and experimental measurements of [45]
(blackpoints) in an X–Y slice are presented for t ¼ 0:24 s and t ¼ 0:4 s – 600 � 20 � 100 grid and 27 ppc . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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simulations. It can be observed that the case Re ¼ 0:1 and H=D ¼ 9 is the only case that does not follow the buckling condi-
tions. This is probably due to the two-dimensional character of the simulations, to the axisymmetrical assumption of the
analytical law (25) and the uncertainty of the measurements used by [10]. This case validates the accuracy and efficiency



Fig. 32. Initial condition for the three-dimensional dam-break flow over an obstacle – Volume Of Fluid function (C = 0.5 in blue), obstacle in orange and
computational grid for the coarser 161 � 25 � 35 grid – 27 ppc are used. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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of the method for solving laminar two-phase flows involving unsteady behavior of free surfaces with connections between
interfaces.

5.4. Three-dimensional dam-break flow

The three-dimensional dam-break flow resulting from the release of a water reserve on a still water level laying in front of
the dam was considered. The dimensions and characteristics of the problem were chosen according to the case b in Fig. 3 of
[45]. This configuration is interesting as the dam-break involves the generation of a forward jet that breaks in front of the
initial dam. The unsteady behavior of the free-surface flow is characterized by interface ruptures and coalescence. In addi-
tion, measurements of the free surface, with a vertical plane light sheet, are available to validate the simulation results [45].
The initial condition is presented in Fig. 28: a still water reserve that is 0.1 m high and 0.6 m long upstream and 0.01 m high
and 0.6 m long downstream is considered. The dam is located at x ¼ 0:6 m. The flow channel is 0.4 m wide, and the numer-
ical parameters are ppc ¼ 27 and Dt ¼ 0:0001 s, and the regular Cartesian grid is 600 � 20 � 100.

The free-surface evolutions obtained with the VOF-SM simulations are presented in Fig. 29. The initial stages of the dam-
break flow at t = 0.05 s and 0.1 s show the apparition of a forward jet that breaks downstream of the dam at t ¼ 0:24 s and
generates secondary jets and breaking processes from t ¼ 0:3 s to t ¼ 0:4 s. From a qualitative point of view, the free-surface
flow is in good agreement with the non-linear potential flow computations and experiments of [45]. Fig. 30 proposes a zoom
on the breaking zone at t ¼ 0:24 s and t ¼ 0:35 s. The velocity field is regular and continuous through the free surface, even if
the right end of the breaking zone, in terms of wave behavior and Shallow-Water analysis [51], corresponds to a shock prop-
agating from left to right. In addition, it can be observed that the VOF-SM approach remains compact and almost discontin-
uous at the interface, similarly to the most efficient VOF methods of the literature.

To finish, the VOF-SM simulations at t ¼ 0:24 s and t ¼ 0:4 s (see Fig. 31) in a median slice perpendicular to the initial dam
are compared to the experiments of [45]. At t ¼ 0:24 s, a very good agreement is found between both results in the rarefac-
tion wave zone (left part of the dam-break flow) as well as in the shock zone (right part of the dam-break flow). Some irreg-
ularities are observed in the measurements, due to the difficult interpretation of the image in the free-surface zone where
large amounts of foam exist. At t ¼ 0:4 s, the simulations and experiments are also comparable, with many more differences
in the shock zone. The velocity and height of the shock are very well predicted at these two reference times.

5.5. Three-dimensional dam-break flow over an obstacle

The three-dimensional dam-break flow over an obstacle corresponding to the experiments of [24] is now considered in
order to evaluate the ability of the VOF-SM to handle real three-dimension free-surface flows. The fluids are water and air



Fig. 33. Three-dimensional dam-break flow over an obstacle – Volume Of Fluid function C ¼ 0:5 in blue and obstacle in orange – 161 � 50 � 35 grid –
27 ppc are used – rom left to right and top to bottom, t� ¼ 2:11;3:17;5:28;6:33;7:39;10:56;14:78;17:95;22:17 and 29.56. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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and the dimensions of tank are 3.22 m � 1 m � 1 m. The initial water reserve dimensions are 1.228 m � 1 m � 0.55 m. Its
initial height is noted h0. The same probes H2, H4, P1, P3 and P5 as in [24] are used for the measurements of the pressure
and vertical free-surface elevation to be compared with the experiments of [24]. The initial condition is presented in Fig. 32.
Two computational grids are considered for grid convergence, containing 161 � 25 � 35 (140,875 elements) and
161 � 50 � 35 (281,750 elements) grid cells. The grid is constant along the X- and Y- axis while a constant space step is cho-
sen along the Z-axis for 0 < z < 0:6 (30 cells) with an exponential grid zone for 0:6 < z < 1 (5 cells). The different stages of



Fig. 34. Time evolution of dimensionless vertical water heights h� according to dimensionless time h� for probe H4 (top) and H2 (bottom).
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the dam-break flow over the parallelepiped obstacle is illustrated in Fig. 33. The obstacle is numerically modeled thanks to a
fictitious domain approach and a penalty method according to the works of [23,53]. The results are in good agreement with
previous numerical simulations realized by [24,39]. It can be noted that the Lagrangian management of the VOF function C
induces a less regular behavior of the C ¼ 0:5 isoline, i.e. the free surface. In addition, more bubbles and small interfacial
structures are observed when the dam-break wave interacts with the obstacles and the walls of the tank. In the two cases,
thanks to the good conservation of the mass advected by the Lagrangian markers, the maximum relative mass error esti-
mated as the integral of the Eulerian VOF function C is between 1% and 2%.

Concerning the computational time involved by the VOF-SM, a comparison has been realized on the two grids between
the VOF-SM and the VOF-PLIC method of [56]. These values have been compared to the time required to solve the Navier–
Stokes equations with the augmented Lagrangian method when 60 iterations are considered in the iterative solver. These
values involve a time almost equivalent to the time required by a time splitting method for solving the mass and momentum
equations. On a 2.2 GHz Intel Centrino processor with 2 Mo central memory, the VOF-SM, VOF-PLIC and Navier–Stokes solv-
ing requires respectively in average 8.5, 0.06 and 26 s on the coarser grid and 16.8, 0.13 and 61 s on the finer mesh. It appears
clearly that the VOF-SM is expansive compared to a standard interface tracking method. However, even in its globally seeded
version (more than 3.8 and 7.6 millions of particles are managed on the two grids), the time dedicated to the VOF-SM re-
mains three times lower than the time required by the Navier–Stokes solver. The VOF-SM time cost could be drastically re-
duced by seeding locally the Lagrangian markers in the vicinity of the interface. This local Lagrangian mesh refinement
version of VOF-SM is under development and will be presented in the near future.



Fig. 35. Time evolution of pressure according to dimensionless time t� for probe P1 (top), P3 (middle) and P5 (bottom).
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The quantitative validation of the numerical simulations can be achieved thanks to the comparison of the vertical free
surface and pressure measurements at probe H2, H4, P1, P3 and P5. Dimensionless time t� and vertical water height h�

are introduced such that t� ¼ t
ffiffi
ð

p
g=h0Þ and h� ¼ h=h0. In Fig. 34 are presented the comparison of the numerically and exper-

imentally obtained vertical water heights according to time. A global very good agreement is found between measurements
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and simulations. The major discrepancies are observed for t� ¼ 16 concerning probe H4 and for t� ¼ 20 concerning probe H2,
as in the simulations of [39]. No major differences are observed between the two grids, demonstrating the macroscopic con-
vergence of the simulations. The pressure values of probe P1, P3 and P5 on the obstacle are presented in Fig. 35. As for the
vertical free-surface elevation, the numerical pressure probes provides values very close to the experimental ones. The only
important difference is observed for the three curves for t� ¼ 20. The same gap is described in the work of [39], perhaps cor-
responding to a bad value concerning the positioning of the probes along the Y-axis. This validation problem confirms the
potential of the VOF-SM to deal accurately with free-surface flows on irregular grids, even with less than 200000 elements
in three dimensions.
6. Conclusions and perspectives

A new Volume Of Fluid Sub-Mesh (VOF-SM) method for the simulation of scalar interface advection or transport issues
was presented. The method is based on a Eulerian representation of the VOF or concentration functions thanks to a Lagrang-
ian sub-mesh description that employs Lagrangian markers to build a local Eulerian concentration. The VOF-SM method is
able to simulate interface tracking as well as concentration transport problems on orthogonal curvilinear grids in three
dimensions.

It could be demonstrated that the VOF-SM method is at least of second order regardless of the grid irregularity or the
complexity of the initial VOF or concentration profile. The results provided by the VOF-SM approach are one to two orders
of magnitude better than the best VOF or advection schemes found in the literature. Concerning incompressible free-surface
flow simulations, the VOF-SM method, coupled to an augmented Lagrangian method, was validated in two dimensions on
the filling of a square cavity by a viscous fluid. The stability diagram of [10] concerning buckling jets could be nicely recov-
ered and validated the ability of the VOF-SM method to simulate free-surface flows. The VOF-SM method was also evaluated
on the three-dimensional dam-break flow over a wet bottom. The behavior of the simulations were in good agreement with
the experiments and computations of [45]. The quantitative and unsteady behavior of the VOF-SM approach was validated in
this case.

On a physical point of view, the numerical modeling of surface tension forces is not presented in this article as it requires
a special attention. The Continuum Surface Force (CSF) of [6] has been used with the VOF-SM by using the Eulerian VOF func-
tion C to estimate a volume force added in the momentum equation, as is classically done in VOF or level-set methods. It can
be imagined to benefit from the Lagrangian description of the two-phase flow so as to estimate the capillary effects by using
the concentration advected by the Markers as in SPH methods. Specific developments are under progress concerning the sur-
face tension forces with the VOF-SM approach which will be presented in future articles.

Future developments of the VOF-SM approach will be devoted to improving the local particle distribution near the inter-
face so as to optimize the computation time. In addition, the particle remeshing will have to be improved, for example by
using Kernel functions as proposed in [3,9,25,7]. Moreover, in the Lagrangian advection step of the markers, a correction
of the particle velocity [7] will be evaluated in order to ensure mass conservation at the Lagrangian scale. To finish, parallel
implementations of the VOF-SM method will have to be considered. It seems natural to implement this point with distribute
memory supercomputers as the VOF-SM algorithm only requires local information in order to build the Eulerian VOF or con-
centration profiles. The major difficulty lies in the exchange of the markers between the sub-domains attached to the
processors.

The VOF-SM method is a numerical tool that provides a description of the multiphase flow at a scale smaller than the
Eulerian grid cell. It is a first step in carrying out sub-mesh physical modeling of multiphase flows involving LES turbulence
models [30,26,54] or small-scale interfacial structures with specific drag forces, coalescence or rupture processes. Applica-
tions to fuel injection in engines, interaction between plasma and liquid jets or wave breaking [31,34] are affected by these
models.
Acknowledgments

We acknowledge the reviewers for their fruitful remarks and helpful suggestions that guide us in improving this article.
The authors also thank the French Commissariat a l’Energie Atomique (CEA) for its financial support.
References

[1] E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, A geometrical area-preserving volume-of-fluid advection method, J. Comput. Phys. 192 (2003) 355–
364.

[2] E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian
geometry, J. Comput. Phys. 225 (2007) 2301–2319.

[3] J.T. Beale, On the accuracy of vortex methods at large times, in: B. Engquist, M. Luskin, A. Majda (Eds.), Computational Fluid Dynamics and Reacting
Gas Flows, Springer-Verlag, New York, 1988.

[4] F. Bierbrauer, S.P. Zhu, A numerical model for multiphase flow based on the GMPPS formulation. Part I: Kinematics, Comput. Fluids 36 (2007) 1199–
1212.

[5] A. Bott, A positive definite advection scheme obtained by nonlinear renormalization of the advective flux, Mon. Wea. Rev. 117 (1989) 1006–1015.
[6] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335–354.



106 S. Vincent et al. / Journal of Computational Physics 229 (2010) 73–106
[7] A.K. Chaniotis, D. Poulikakos, P. Koumoutsakos, Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows, J.
Comput. Phys. 182 (2002) 67–90.

[8] G.-H. Cottet, P. Poncet, Advances in direct numerical simulations of 3D wall-bounded flows by vortex-in-cell methods, J. Comput. Phys. 193 (2003)
136–158.

[9] G.H. Cottet, Artificial viscosity models for vortex and particle methods, J. Comput. Phys. 127 (1996) 299–308.
[10] J.O. Cruickshank, Low Reynolds number instabilities in stagnating flows, J. Fluid Mech. 193 (1988) 111–127.
[11] S. Dhaniyala, A.S. Wexler, Numerical schemes to model condensation and evaporation of aerosols, Atmos. Env. 30 (1996) 919–928.
[12] V. Daru, C. Tenaud, High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations, J. Comput. Phys. 193 (2004)

563–594.
[13] D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface capturing, J. Comput. Phys. 183 (2002) 83–116.
[14] R. Fedkiw, S. Osher, Level set methods: an overview and some recent results, J. Comput. Phys. 169 (2001) 463–502.
[15] M. Fortin, R. Glowinski, Methodes de Lagrangien augmente, Application a la resolution numerique de problemes aux limites, Paris, Dunod, 1982.
[16] H. Friess, D. Lakehal, S. Vincent, Interface tracking based on an imposed velocity field in a convergent–divergent channel (PN), Multiphase Sci. Tech. 16

(2004) 163–168.
[17] J.R. Chawner, J.P. Steinbrenner, N. Wyman, Hybrid grid generation for complex geometries using Gridgen, in: Seventh International Grid Conference,

Whistler, British Columbia, Canada, June 25, 2000.
[18] I. Gustafsson, On first and second order symmetric factorization methods for the solution of elliptic difference equations, Chalmers University of

Technology, 1978.
[19] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201–225.
[20] M.E. Hubbard, A.L. Laird, Achieving high-order fluctuation splitting schemes by extending the stencil, Comput. Fluids 34 (2005) 443–459.
[21] E. Ishii, T. Ishikawa, Y. Tanabe, Hybrid particle/grid method for predicting motion of micro- and macro-free surfaces, J. Fluid Eng. 128 (2006) 921–930.
[22] G.S. Jiang, C.W. Shu, Efficient implementation of weighted essentially non-oscillatory schemes, J. Comput. Phys. 126 (1996) 202–228.
[23] K. Khadra, P. Angot, S. Parneix, J.P. Caltagirone, Fictitious domain approach for numerical modelling of Navier–Stokes equations, Int. J. Numer. Meth.

Fluids 34 (2000) 651–684.
[24] K.M.T. Kleefsman, G. Fekken, A.E.P. Veldman, B. Iwanowski, B. Buchner, A volume-of-fluid based simulation method for wave impact problems, J.

Comput. Phys. 206 (2005) 363–393.
[25] P. Koumoutsakos, Inviscid axisymmetrization of an elliptical vortex, J. Comput. Phys. 138 (1997) 821–857.
[26] E. Labourasse, D. Lacanette, A. Toutant, P. Lubin, S. Vincent, O. Lebaigue, J.-P. Caltagirone, P. Sagaut, Towards large eddy simulation of isothermal two-

phase flows: governing equations and a priori tests, Int. J. Multiphase Flow 33 (2007) 1–39.
[27] D. Lacanette, A. Gosset, S. Vincent, J.-M. Buchlin, E. Arquis, Macroscopic analysis of gas-jet wiping: numerical simulation and experimental approach,

Phys. Fluids 18 (2006) 1–15.
[28] R.J. LeVeque, Numerical methods for conservation laws, in: Lecture in Mathematics, Birhauser, Zurich, 1990.
[29] Q. Li, S. Fu, K. Xu, A compressible Navier–Stokes flow solver with scalar transport, J. Comput. Phys. 204 (2005) 692–714.
[30] P. Liovic, D. Lakehal, Interface–turbulence interactions in large-scale bubbling processes, Int. J. Heat Fluid Flow 28 (2007) 127–144.
[31] P. Liovic, D. Lakehal, Multi-physics treatment in the vicinity of arbitrarily deformable gasliquid interfaces, J. Comput. Phys. 222 (2007) 504–535.
[32] J. Liu, S. Koshisuka, Y. Oka, A hybrid particle-mesh method for viscous, incompressible, multiphase flows, J. Comput. Phys. 202 (2005) 65–93.
[33] J. Lopez, J. Hernandez, P. Gomez, F. Faura, An improved PLIC-VOF method for tracking thin fluid structures in incompressible two-phase flows, J.

Comput. Phys 208 (2005) 51–74.
[34] P. Lubin, S. Vincent, S. Abadie, J.-P. Caltagirone, Three-dimensional large eddy simulation of air entrainment under plunging breaking waves, Coastal

Eng. 53 (2006) 631–655.
[35] J.C. Martin, W.J. Moyce, An experimental study of the collapse of liquid columns on a rigid horizontal plane, Phil. Trans. Royal Soc. London 244 (1952)

312–324.
[36] K. Nguyen, D. Dabdub, Two-level time marching scheme using splines for solving the advection equation, Atmos. Env. 35 (2001) 1627–1637.
[37] K. Nguyen, D. Dabdub, Development and analysis of a non-splitting solution for three-dimensional air quality models, Atmos. Env. 37 (2003) 3741–

3748.
[38] A. Oliveira, A.B. Fortunato, Toward an oscillation-free, mass conservative, Eulerian–Lagrangian transport model, J. Comput. Phys. 183 (2002) 142–164.
[39] I.R. Park, K.S. Kim, J. Kim, S.H. Van, A volume-of-fluid method for incompressible free surface flows, Int. J. Numer. Meth. Fluids, doi: 10.1002/fld.2000,

2009.
[40] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, 1980.
[41] P. Raad, R. Bidoae, Three-dimensional Eulerian–Lagrangian marker and micro cell method for the simulation of free surface flows, J. Comput. Phys. 203

(2005) 668–699.
[42] W. Rider, D. Kothe, Reconstructing volume tracking, J. Comput. Phys. 141 (1998) 112–152.
[43] R. Scardovelli, S. Zaleski, Direct numerical simulation of free surface and interfacial flows, Ann. Rev. Fluid. Mech. 31 (1999) 567–603.
[44] O. Schenk, K. Gartner, W. Fichtner, A. Stricker, PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device

simulation, J. Future Gener. Comput. Sys. 18 (2001) 69–78.
[45] P.K. Stansby, A. Chegini, T.C.D. Barnes, The initial stages of dam-break flow, J. Fluid Mech. 374 (1998) 407–424.
[46] V.A. Titarev, E.F. Toro, WENO schemes based on upwind and centred TVD fluxes, J. Comput. Phys. 34 (2005) 705–720.
[47] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Jan, A front tracking method for the computations of

multiphase flows, J. Comput. Phys. 169 (2001) 708–759.
[48] H.A. Van Der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat.

Comput. 13 (1992) 631–644.
[49] S. Vincent, J.-P. Caltagirone, Efficient solving method for unsteady incompressible interfacial flow problems, Int. J. Numer. Meth. Fluids 30 (1999) 795–

811.
[50] S. Vincent, J.-P. Caltagirone, A one-cell local multigrid method for solving unsteady incompressible multiphase flows, J. Comput. Phys. 163 (2000) 172–

215.
[51] S. Vincent, P. Bonneton, J.-P. Caltagirone, Numerical modelling of bore propagation and run-up on sloping beaches using a Mac-Cormack TVD scheme, J.

Hydraul. Res. 39 (2001) 41–49.
[52] S. Vincent, J.-P. Caltagirone, P. Lubin, T.N. Randrianarivelo, An adaptative augmented Lagrangian method for three-dimensional multimaterial flows,

Comput. Fluids 33 (2004) 1273–1299.
[53] S. Vincent, T.N. Randrianarivelo, G. Pianet, J.-P. Caltagirone, Local penalty methods for flows interacting with moving solids at high Reynolds numbers,

Comput. Fluids 36 (2007) 902–913.
[54] S. Vincent, J. Larocque, D. Lacanette, A. Toutant, P. Lubin, P. Sagaut, Numerical simulation of phase separation and a priori 3 two-phase LES filtering,

Comput. Fluids 37 (2008) 898–906.
[55] F. Xiao, X. Peng, A convexity preserving scheme for conservative advection transport, J. Comput. Phys. 198 (2004) 389–402.
[56] D.L. Youngs, K.W. Morton, M.J. Baines, Time-dependent multi-material flow with large fluid distortion, in: Numerical Methods for Fluid Dynamics,

Academic Press, New York, 1982.


	Eulerian–Lagrangian multiscale methods for solving scalar equations – Application to incompressible two-phase flows
	Introduction
	A mixed Eulerian–Lagrangian method for solving scalar equations
	Existing methods
	The Volume Of Fluid Sub-Mesh (VOF-SM) method
	Initialization of the markers
	Transport of the markers
	Management of time
	Velocity interpolation
	Transport
	Boundary conditions
	Updating the marker data

	Particle to Eulerian mesh projection
	Redistribution of the particles


	Application of the VOF-SM method to scalar interface tracking problems
	Shearing of a circle in a vortex velocity field
	Regular mesh
	Irregular mesh

	Shearing of a sphere in a vortex velocity field
	Deformation of a circle in a converging–diverging pipe
	Cartesian grid simulations
	Curvilinear grid simulations


	Application of the VOF-SM method to scalar transport problems
	Advection of a complex 1D concentration profile
	Advection of a concentration profile in a vortex velocity field
	Shearing of a cone in a shearing vortex velocity field
	Treatment of diffusion and 3D extensions

	Simulating free-surface flows with the VOF-SM method
	Two-phase flow model
	Numerical methods dedicated to flow solver
	Jet injection in a square cavity
	Three-dimensional dam-break flow
	Three-dimensional dam-break flow over an obstacle

	Conclusions and perspectives
	Acknowledgments
	References


